Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743615

RESUMO

Cytochrome P450 epoxygenase Cyp2c44, a murine epoxyeicosatrienoic acid (EET) producing enzyme, promotes insulin sensitivity and Cyp2c44(-/-) mice show hepatic insulin resistance. Because insulin resistance leads to hepatic lipid accumulation and hyperlipidemia, we hypothesized that Cyp2c44 regulates hepatic lipid metabolism. Standard chow diet (SD) fed male Cyp2c44(-/-) mice had significantly decreased EET levels and increased hepatic and plasma lipid levels compared to wild-type mice. We showed increased hepatic plasma membrane localization of the FA transporter 2 (FATP2) and total unsaturated fatty acids and diacylglycerol levels. Cyp2c44(-/-) mice had impaired glucose tolerance and increased hepatic plasma membraneassociated PKCδ and phosphorylated IRS-1, two negative regulators of insulin signaling. Surprisingly, SD and high fat diet fed (HFD) Cyp2c44(-/-) mice had similar glucose tolerance and hepatic plasma membrane PKCδ levels, suggesting that SD-fed Cyp2c44(-/-) mice have reached their maximal glucose intolerance. Inhibition of PKCδ resulted in decreased IRS-1 serine phosphorylation and improved insulin-mediated signaling in Cyp2c44(-/-) hepatocytes. Finally, Cyp2c44(-/-) HFD-fed mice treated with the analog EET-A showed decreased hepatic plasma membrane FATP2 and PCKDδ levels with improved glucose tolerance and insulin signaling. In conclusion, loss of Cyp2c44 with concomitant decreased EET levels leads to increased hepatic FATP2 plasma membrane localization, diacylglycerol accumulation, and PKCδ-mediated attenuation of insulin signaling. Thus, Cyp2c44 acts as a regulator of lipid metabolism by linking it to insulin signaling.

2.
bioRxiv ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37905027

RESUMO

Collagen IV is a primordial component of basement membranes, a specialized form of extracellular matrix that enabled multi-cellular epithelial tissues. In mammals, collagen IV assembles from a family of six α-chains (α1 to α6), encoded by six genes (COL4A1 to COL4A6), into three distinct scaffolds: the α121, the α345 and a mixed scaffold containing both α121 and α565. The six mammalian COL4A genes occur in pairs that occur in a head-to-head arrangement on three distinct chromosomes. In Alport syndrome, variants in the COL4A3, 4 or 5 genes cause either loss or defective assembly of the collagen IV α345 scaffold which results in a dysfunctional glomerular basement membrane, proteinuria and progression to renal failure in millions of people worldwide. Here, we determine the evolutionary emergence and diversification of the COL4A genes using comparative genomics and biochemical analyses. Using syntenic relationships to genes closely linked to the COL4A genes, we determine that the COL4A3 and COL4A4 gene pair appeared in cyclostomes (hagfish and lampreys) while the COL4A5 and COL4A6 gene pair emerged in gnathostomes, jawed vertebrates. The more basal chordate species, lancelets and tunicates, do not have discrete kidneys and have a single COL4A gene pair, though often with single isolated COL4 genes similar to those found in C elegans . Remarkably, while the six COL4A genes are conserved in vertebrates, amphibians have lost the COL4A3 and COL4A4 genes. Our findings of the evolutionary emergence of these genes, together with the amphibian double-knockout, opens an experimental window to gain insights into functionality of the Col IV α345 scaffold.

3.
Dev Cell ; 57(8): 974-994.e8, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35421371

RESUMO

RNA transfer via extracellular vesicles (EVs) influences cell phenotypes; however, lack of information regarding biogenesis of RNA-containing EVs has limited progress in the field. Here, we identify endoplasmic reticulum membrane contact sites (ER MCSs) as platforms for the generation of RNA-containing EVs. We identify a subpopulation of small EVs that is highly enriched in RNA and regulated by the ER MCS linker protein VAP-A. Functionally, VAP-A-regulated EVs are critical for miR-100 transfer between cells and in vivo tumor formation. Lipid analysis of VAP-A-knockdown EVs revealed reductions in the EV biogenesis lipid ceramide. Knockdown of the VAP-A-binding ceramide transfer protein CERT led to similar defects in EV RNA content. Imaging experiments revealed that VAP-A promotes luminal filling of multivesicular bodies (MVBs), CERT localizes to MVBs, and the ceramide-generating enzyme neutral sphingomyelinase 2 colocalizes with VAP-A-positive ER. We propose that ceramide transfer via VAP-A-CERT linkages drives the biogenesis of a select RNA-containing EV population.


Assuntos
Vesículas Extracelulares , Complexo de Golgi , Ceramidas/metabolismo , Retículo Endoplasmático/metabolismo , Vesículas Extracelulares/metabolismo , Complexo de Golgi/metabolismo , Proteínas Serina-Treonina Quinases , RNA/metabolismo
4.
J Biol Chem ; 296: 100591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33775698

RESUMO

Our recent work identified a genetic variant of the α345 hexamer of the collagen IV scaffold that is present in patients with glomerular basement membrane diseases, Goodpasture's disease (GP) and Alport syndrome (AS), and phenocopies of AS in knock-in mice. To understand the context of this "Zurich" variant, an 8-amino acid appendage, we developed a construct of the WT α345 hexamer using the single-chain NC1 trimer technology, which allowed us to solve a crystal structure of this key connection module. The α345 hexamer structure revealed a ring of 12 chloride ions at the trimer-trimer interface, analogous to the collagen α121 hexamer, and the location of the 170 AS variants. The hexamer surface is marked by multiple pores and crevices that are potentially accessible to small molecules. Loop-crevice-loop features constitute bioactive sites, where pathogenic pathways converge that are linked to AS and GP, and, potentially, diabetic nephropathy. In Pedchenko et al., we demonstrate that these sites exhibit conformational plasticity, a dynamic property underlying assembly of bioactive sites and hexamer dysfunction. The α345 hexamer structure is a platform to decipher how variants cause AS and how hypoepitopes can be triggered, causing GP. Furthermore, the bioactive sites, along with the pores and crevices on the hexamer surface, are prospective targets for therapeutic interventions.


Assuntos
Doença Antimembrana Basal Glomerular/genética , Colágeno Tipo IV/química , Colágeno Tipo IV/metabolismo , Mutação , Nefrite Hereditária/genética , Multimerização Proteica , Animais , Colágeno Tipo IV/genética , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Estrutura Quaternária de Proteína
5.
J Biol Chem ; 296: 100590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33774048

RESUMO

Diseases of the glomerular basement membrane (GBM), such as Goodpasture's disease (GP) and Alport syndrome (AS), are a major cause of chronic kidney failure and an unmet medical need. Collagen IVα345 is an important architectural element of the GBM that was discovered in previous research on GP and AS. How this collagen enables GBM to function as a permselective filter and how structural defects cause renal failure remain an enigma. We found a distinctive genetic variant of collagen IVα345 in both a familial GP case and four AS kindreds that provided insights into these mechanisms. The variant is an 8-residue appendage at the C-terminus of the α3 subunit of the α345 hexamer. A knock-in mouse harboring the variant displayed GBM abnormalities and proteinuria. This pathology phenocopied AS, which pinpointed the α345 hexamer as a focal point in GBM function and dysfunction. Crystallography and assembly studies revealed underlying hexamer mechanisms, as described in Boudko et al. and Pedchenko et al. Bioactive sites on the hexamer surface were identified where pathogenic pathways of GP and AS converge and, potentially, that of diabetic nephropathy (DN). We conclude that the hexamer functions include signaling and organizing macromolecular complexes, which enable GBM assembly and function. Therapeutic modulation or replacement of α345 hexamer could therefore be a potential treatment for GBM diseases, and this knock-in mouse model is suitable for developing gene therapies.


Assuntos
Doença Antimembrana Basal Glomerular/genética , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Mutação , Nefrite Hereditária/genética , Animais , Colágeno Tipo IV/química , Camundongos , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Transdução de Sinais
6.
Elife ; 62017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28418331

RESUMO

The role of the cellular microenvironment in enabling metazoan tissue genesis remains obscure. Ctenophora has recently emerged as one of the earliest-branching extant animal phyla, providing a unique opportunity to explore the evolutionary role of the cellular microenvironment in tissue genesis. Here, we characterized the extracellular matrix (ECM), with a focus on collagen IV and its variant, spongin short-chain collagens, of non-bilaterian animal phyla. We identified basement membrane (BM) and collagen IV in Ctenophora, and show that the structural and genomic features of collagen IV are homologous to those of non-bilaterian animal phyla and Bilateria. Yet, ctenophore features are more diverse and distinct, expressing up to twenty genes compared to six in vertebrates. Moreover, collagen IV is absent in unicellular sister-groups. Collectively, we conclude that collagen IV and its variant, spongin, are primordial components of the extracellular microenvironment, and as a component of BM, collagen IV enabled the assembly of a fundamental architectural unit for multicellular tissue genesis.


Assuntos
Membrana Basal/química , Colágeno Tipo IV/análise , Colágeno Tipo IV/genética , Ctenóforos/fisiologia , Matriz Extracelular/química , Animais , Ctenóforos/citologia , Ctenóforos/genética , Ctenóforos/metabolismo , Evolução Molecular
7.
Free Radic Biol Med ; 89: 83-90, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26159508

RESUMO

Diabetes is characterized, in part, by activation of toxic oxidative and glycoxidative pathways that are triggered by persistent hyperglycemia and contribute to diabetic complications. Inhibition of these pathways may benefit diabetic patients by delaying the onset of complications. One such inhibitor, pyridoxamine (PM), had shown promise in clinical trials. However, the mechanism of PM action in vivo is not well understood. We have previously reported that hypohalous acids can cause disruption of the structure and function of renal collagen IV in experimental diabetes (K.L. Brown et al., Diabetes 64:2242-2253, 2015). In the present study, we demonstrate that PM can protect protein functionality from hypochlorous and hypobromous acid-derived damage via a rapid direct reaction with and detoxification of these hypohalous acids. We further demonstrate that PM treatment can ameliorate specific hypohalous acid-derived structural and functional damage to the renal collagen IV network in a diabetic animal model. These findings suggest a new mechanism of PM action in diabetes, namely sequestration of hypohalous acids, which may contribute to known therapeutic effects of PM in human diabetic nephropathy.


Assuntos
Colágeno Tipo IV/efeitos dos fármacos , Diabetes Mellitus Experimental/prevenção & controle , Ácido Hipocloroso/toxicidade , Rim/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Piridoxamina/farmacologia , Complexo Vitamínico B/farmacologia , Sequência de Aminoácidos , Animais , Bromatos/toxicidade , Cromatografia Líquida , Colágeno Tipo IV/química , Colágeno Tipo IV/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Humanos , Técnicas In Vitro , Rim/patologia , Masculino , Dados de Sequência Molecular , Oxidantes/toxicidade , Oxirredução , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
8.
Proc Natl Acad Sci U S A ; 111(1): 331-6, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344311

RESUMO

Basement membrane, a specialized ECM that underlies polarized epithelium of eumetazoans, provides signaling cues that regulate cell behavior and function in tissue genesis and homeostasis. A collagen IV scaffold, a major component, is essential for tissues and dysfunctional in several diseases. Studies of bovine and Drosophila tissues reveal that the scaffold is stabilized by sulfilimine chemical bonds (S = N) that covalently cross-link methionine and hydroxylysine residues at the interface of adjoining triple helical protomers. Peroxidasin, a heme peroxidase embedded in the basement membrane, produces hypohalous acid intermediates that oxidize methionine, forming the sulfilimine cross-link. We explored whether the sulfilimine cross-link is a fundamental requirement in the genesis and evolution of epithelial tissues by determining its occurrence and evolutionary origin in Eumetazoa and its essentiality in zebrafish development; 31 species, spanning 11 major phyla, were investigated for the occurrence of the sulfilimine cross-link by electrophoresis, MS, and multiple sequence alignment of de novo transcriptome and available genomic data for collagen IV and peroxidasin. The results show that the cross-link is conserved throughout Eumetazoa and arose at the divergence of Porifera and Cnidaria over 500 Mya. Also, peroxidasin, the enzyme that forms the bond, is evolutionarily conserved throughout Metazoa. Morpholino knockdown of peroxidasin in zebrafish revealed that the cross-link is essential for organogenesis. Collectively, our findings establish that the triad-a collagen IV scaffold with sulfilimine cross-links, peroxidasin, and hypohalous acids-is a primordial innovation of the ECM essential for organogenesis and tissue evolution.


Assuntos
Membrana Basal/metabolismo , Evolução Biológica , Iminas/química , Compostos de Enxofre/química , Sequência de Aminoácidos , Animais , Colágeno Tipo IV/química , Reagentes de Ligações Cruzadas/química , Drosophila melanogaster , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/química , Heme/química , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/química , Peroxidase/química , Peroxidases/química , Estrutura Terciária de Proteína , Análise de Sequência de RNA , Homologia de Sequência de Aminoácidos , Peixe-Zebra , Peroxidasina
9.
Clin Chem Lab Med ; 52(1): 39-45, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23492568

RESUMO

Non-enzymatic modification of proteins in hyperglycemia is a major proposed mechanism of diabetic complications. Specifically, advanced glycation end products (AGEs) derived from hyperglycemia-induced reactive carbonyl species (RCS) can have pathogenic consequences when they target functionally critical protein residues. Modification of a small number of these critical residues, often undetectable by the methodologies relying on measurements of total AGE levels, can cause significant functional damage. Therefore, detection of specific sites of protein damage in diabetes is central to understanding the molecular basis of diabetic complications and for identification of biomarkers which are mechanistically linked to the disease. The current paradigm of RCS-derived protein damage places a major focus on methylglyoxal (MGO), an intermediate of cellular glycolysis. We propose that glyoxal (GO) is a major contributor to extracellular matrix (ECM) damage in diabetes. Here, we review the current knowledge and provide new data about GO-derived site-specific ECM modification in experimental diabetes.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Glioxal/química , Aldeídos/química , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Proteínas da Matriz Extracelular/química , Glioxal/metabolismo , Humanos , Cetonas/química
10.
J Am Soc Nephrol ; 23(6): 1027-38, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22440900

RESUMO

Mesangial cells and podocytes express integrins α1ß1 and α2ß1, which are the two major collagen receptors that regulate multiple cellular functions, including extracellular matrix homeostasis. Integrin α1ß1 protects from glomerular injury by negatively regulating collagen production, but the role of integrin α2ß1 in renal injury is unclear. Here, we subjected wild-type and integrin α2-null mice to injury with adriamycin or partial renal ablation. In both of these models, integrin α2-null mice developed significantly less proteinuria and glomerulosclerosis. In addition, selective pharmacological inhibition of integrin α2ß1 significantly reduced adriamycin-induced proteinuria, glomerular injury, and collagen deposition in wild-type mice. This inhibitor significantly reduced collagen synthesis in wild-type, but not integrin α2-null, mesangial cells in vitro, demonstrating that its effects are integrin α2ß1-dependent. Taken together, these results indicate that integrin α2ß1 contributes to glomerular injury by positively regulating collagen synthesis and suggest that its inhibition may be a promising strategy to reduce glomerular injury and proteinuria.


Assuntos
Injúria Renal Aguda/patologia , Doxorrubicina/farmacologia , Integrina alfa2beta1/metabolismo , Glomérulos Renais/lesões , Injúria Renal Aguda/metabolismo , Albuminúria/fisiopatologia , Análise de Variância , Animais , Western Blotting , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imuno-Histoquímica , Integrina alfa2beta1/efeitos dos fármacos , Testes de Função Renal , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Distribuição Aleatória , Receptores de Colágeno/metabolismo
11.
Biochem Biophys Res Commun ; 411(3): 574-9, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21763683

RESUMO

Oxidative damage to proteins is one of the major pathogenic mechanisms in many chronic diseases. Therefore, inhibition of this oxidative damage can be an important part of therapeutic strategies. Pyridoxamine (PM), a prospective drug for treatment of diabetic nephropathy, has been previously shown to inhibit several oxidative and glycoxidative pathways, thus protecting amino acid side chains of the proteins from oxidative damage. Here, we demonstrated that PM can also protect protein backbone from fragmentation induced via different oxidative mechanisms including autoxidation of glucose. This protection was due to hydroxyl radical scavenging by PM and may contribute to PM therapeutic effects shown in clinical trials.


Assuntos
Antioxidantes/química , Proteínas/química , Piridoxamina/química , Glucose/metabolismo , Radical Hidroxila/química , Muramidase/química , Oxirredução , Ribonucleases/química , Soroalbumina Bovina/química
12.
Biochemistry ; 50(27): 6102-12, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21661747

RESUMO

Nonenzymatic modification of proteins in hyperglycemia is a major mechanism causing diabetic complications. These modifications can have pathogenic consequences when they target active site residues, thus affecting protein function. In the present study, we examined the role of glucose autoxidation in functional protein damage using lysozyme and RGD-α3NC1 domain of collagen IV as model proteins in vitro. We demonstrated that glucose autoxidation induced inhibition of lysozyme activity as well as NC1 domain binding to α(V)ß(3) integrin receptor via modification of critical arginine residues by reactive carbonyl species (RCS) glyoxal (GO) and methylglyoxal while nonoxidative glucose adduction to the protein did not affect protein function. The role of RCS in protein damage was confirmed using pyridoxamine which blocked glucose autoxidation and RCS production, thus protecting protein function, even in the presence of high concentrations of glucose. Glucose autoxidation may cause protein damage in vivo since increased levels of GO-derived modifications of arginine residues were detected within the assembly interface of collagen IV NC1 domains isolated from renal ECM of diabetic rats. Since arginine residues are frequently present within protein active sites, glucose autoxidation may be a common mechanism contributing to ECM protein functional damage in hyperglycemia and oxidative environment. Our data also point out the pitfalls in functional studies, particularly in cell culture experiments, that involve glucose treatment but do not take into account toxic effects of RCS derived from glucose autoxidation.


Assuntos
Arginina/metabolismo , Glucose/fisiologia , Proteínas/antagonistas & inibidores , Proteínas/fisiologia , Motivos de Aminoácidos , Animais , Colágeno Tipo IV/antagonistas & inibidores , Colágeno Tipo IV/química , Colágeno Tipo IV/metabolismo , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/metabolismo , Glioxal/efeitos adversos , Hiperglicemia/enzimologia , Hiperglicemia/metabolismo , Masculino , Micrococcus/enzimologia , Muramidase/antagonistas & inibidores , Muramidase/metabolismo , Carbonilação Proteica , Estrutura Terciária de Proteína , Proteínas/metabolismo , Aldeído Pirúvico/efeitos adversos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
13.
Mol Cell Proteomics ; 9(5): 811-23, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20305087

RESUMO

Protein complexes and protein-protein interactions are essential for almost all cellular processes. Here, we establish a mammalian affinity purification and lentiviral expression (MAPLE) system for characterizing the subunit compositions of protein complexes. The system is flexible (i.e. multiple N- and C-terminal tags and multiple promoters), is compatible with Gateway cloning, and incorporates a reference peptide. Its major advantage is that it permits efficient and stable delivery of affinity-tagged open reading frames into most mammalian cell types. We benchmarked MAPLE with a number of human protein complexes involved in transcription, including the RNA polymerase II-associated factor, negative elongation factor, positive transcription elongation factor b, SWI/SNF, and mixed lineage leukemia complexes. In addition, MAPLE was used to identify an interaction between the reprogramming factor Klf4 and the Swi/Snf chromatin remodeling complex in mouse embryonic stem cells. We show that the SWI/SNF catalytic subunit Smarca2/Brm is up-regulated during the process of induced pluripotency and demonstrate a role for the catalytic subunits of the SWI/SNF complex during somatic cell reprogramming. Our data suggest that the transcription factor Klf4 facilitates chromatin remodeling during reprogramming.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Lentivirus/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteômica/métodos , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Reprogramação Celular/genética , Cromatografia de Afinidade , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Células-Tronco Pluripotentes/citologia , Ligação Proteica , Transcrição Gênica
14.
J Am Soc Nephrol ; 20(10): 2119-25, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19608705

RESUMO

Diabetic nephropathy (DN) affects both glomerular cells and the extracellular matrix (ECM), yet the pathogenic mechanisms involving cell-matrix interactions are poorly understood. Glycation alters integrin-dependent cell-ECM interactions, and perturbation of these interactions results in severe renal pathology in diabetic animals. Here, we investigated how chemical modifications of the ECM by hyperglycemia and carbonyl stress, two major features of the diabetic milieu, affect mesangial cell functions. Incubation of collagen IV with pathophysiological levels of either the carbonyl compound methylglyoxal (MGO) or glucose resulted in modification of arginine or lysine residues, respectively. Mouse mesangial cells plated on MGO-modified collagen IV showed decreased adhesion and migration. Cells plated on glucose-modified collagen IV showed reduced proliferation and migration and increased collagen IV production. Inhibiting glucose-mediated oxidative modification of collagen IV lysine residues rescued the alterations in cell growth, migration, and collagen synthesis. We propose that diabetic ECM affects mesangial cell functions via two distinct mechanisms: modification of arginine residues by MGO inhibits cell adhesion, whereas oxidative modification of lysine residues by glucose inhibits cell proliferation and increases collagen IV production. These mechanisms may contribute to mesangial cell hypertrophy and matrix expansion in DN.


Assuntos
Colágeno Tipo IV/metabolismo , Nefropatias Diabéticas/etiologia , Glucose/toxicidade , Células Mesangiais/fisiologia , Aldeído Pirúvico/toxicidade , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Camundongos
15.
Free Radic Biol Med ; 47(6): 779-85, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19540915

RESUMO

Reactive oxygen species (ROS) and reactive carbonyl species (RCS) are the major causes of biological tissue damage during exposure to ionizing radiation (IR). The existing strategies to protect normal tissues from the detrimental effects of IR suffer from several shortcomings including highly toxic side effects, unfavorable administration routes, and low efficacy. These shortcomings emphasize a need for radioprotective treatments that combine effectiveness with safety and ease of use. In this paper, we demonstrate that pyridoxamine, a ROS and RCS scavenger with a very favorable safety profile, can inhibit IR-induced gastrointestinal epithelial apoptosis in cell culture and in an animal model. Pyridoxamine was more effective at protecting from radiation-induced apoptosis than amifostine, a synthetic thiol compound and the only FDA-approved radioprotector. We suggest that pyridoxamine has potential as an effective and safe radioprotective agent.


Assuntos
Amifostina/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Sequestradores de Radicais Livres/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos da radiação , Piridoxamina/farmacologia , Protetores contra Radiação/farmacologia , Animais , Linhagem Celular , Citoproteção/efeitos dos fármacos , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/prevenção & controle , Radiação Ionizante
16.
Free Radic Biol Med ; 44(7): 1276-85, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18374270

RESUMO

Nonenzymatic modification of proteins is one of the key pathogenic factors in diabetic complications. Uncovering the mechanisms of protein damage caused by glucose is fundamental to understanding this pathogenesis and in the development of new therapies. We investigated whether the mechanism involving reactive oxygen species can propagate protein damage in glycation reactions beyond the classical modifications of lysine and arginine residues. We have demonstrated that glucose can cause specific oxidative modification of tryptophan residues in lysozyme and inhibit lysozyme activity. Furthermore, modification of tryptophan residues was also induced by purified albumin-Amadori, a ribose-derived model glycation intermediate. The AGE inhibitor pyridoxamine (PM) prevented the tryptophan modification, whereas another AGE inhibitor and strong carbonyl scavenger, aminoguanidine, was ineffective. PM specifically inhibited generation of hydroxyl radical from albumin-Amadori and protected tryptophan from oxidation by hydroxyl radical species. We conclude that oxidative degradation of either glucose or the protein-Amadori intermediate causes oxidative modification of protein tryptophan residues via hydroxyl radical and can affect protein function under physiologically relevant conditions. This oxidative stress-induced structural and functional protein damage can be ameliorated by PM via sequestration of catalytic metal ions and scavenging of hydroxyl radical, a mechanism that may contribute to the reported therapeutic effects of PM in the complications of diabetes.


Assuntos
Proteínas/química , Piridoxamina/química , Espécies Reativas de Oxigênio , Triptofano/química , Animais , Galinhas , Produtos Finais de Glicação Avançada/metabolismo , Radical Hidroxila , Hiperglicemia/metabolismo , Modelos Biológicos , Modelos Químicos , Muramidase/química , Estresse Oxidativo , Espectrofotometria Ultravioleta/métodos , Superóxidos/química
17.
Biochemistry ; 47(3): 997-1006, 2008 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18161948

RESUMO

Pyridoxamine (PM) is a promising drug candidate for treatment of diabetic nephropathy. The therapeutic effect of PM has been demonstrated in multiple animal models of diabetes and in phase II clinical trials. However, the mechanism of PM therapeutic action is poorly understood. One potential mechanism is scavenging of pathogenic reactive carbonyl species (RCS) found to be elevated in diabetes. We have suggested previously that the pathogenicity of RCS methylglyoxal (MGO) may be due to modification of critical arginine residues in matrix proteins and interference with renal cell-matrix interactions. We have also shown that this MGO effect can be inhibited by PM (Pedchenko et al. (2005) Diabetes 54, 2952-2960). These findings raised the questions of whether the effect is specific to MGO, whether other structurally different physiological RCS can act via the same mechanism, and whether their action is amenable to PM protection. In the present study, we have shown that the important physiological RCS 3-deoxyglucosone (3-DG) can damage protein functionality, including the ability of collagen IV to interact with glomerular mesangial cells. We have also demonstrated that PM can protect against 3-DG-induced protein damage via a novel mechanism that includes transient adduction of 3-DG by PM followed by irreversible PM-mediated oxidative cleavage of 3-DG. Our results suggest that, in diabetic nephropathy, the therapeutic effect of PM is achieved, in part, via protection of renal cell-matrix interactions from damage by a variety of RCS. Our data emphasize the potential importance of the contribution by 3-DG, along with other more reactive RCS, to this pathogenic mechanism.


Assuntos
Desoxiglucose/análogos & derivados , Piridoxamina/química , Animais , Bovinos , Adesão Celular/efeitos dos fármacos , Linhagem Celular Transformada , Colágeno Tipo IV/química , Desoxiglucose/química , Desoxiglucose/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Glicosilação/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Células Mesangiais/citologia , Camundongos , Piridoxamina/farmacologia , Piridoxamina/uso terapêutico , Ribonuclease Pancreático/química , Espectrometria de Massas por Ionização por Electrospray , Açúcares Ácidos/análise , Açúcares Ácidos/química
18.
Endocrinology ; 148(5): 2148-56, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17289849

RESUMO

Allopregnanolone (ALLO) and androsterone (ADT) are naturally occurring 3alpha-hydroxysteroids that act as positive allosteric regulators of gamma-aminobutyric acid type A receptors. In addition, ADT activates nuclear farnesoid X receptor and ALLO activates pregnane X receptor. At least with respect to gamma-aminobutyric acid type A receptors, the biological activity of ALLO and ADT depends on the 3alpha-hydroxyl group and is lost upon its conversion to either 3-ketosteroid or 3beta-hydroxyl epimer. Such strict structure-activity relationships suggest that the oxidation or epimerization of 3alpha-hydroxysteroids may serve as physiologically relevant mechanisms for the control of the local concentrations of bioactive 3alpha-hydroxysteroids. The exact enzymes responsible for the oxidation and epimerization of 3alpha-hydroxysteroids in vivo have not yet been identified, but our previous studies showed that microsomal nicotinamide adenine dinucleotide-dependent short-chain dehydrogenases/reductases (SDRs) with dual retinol/sterol dehydrogenase substrate specificity (RoDH-like group of SDRs) can oxidize and epimerize 3alpha-hydroxysteroids in vitro. Here, we present the first evidence that microsomal nicotinamide adenine dinucleotide-dependent 3alpha-hydroxysteroid dehydrogenase/epimerase activities are widely distributed in human tissues with the highest activity levels found in liver and testis and lower levels in lung, spleen, brain, kidney, and ovary. We demonstrate that RoDH-like SDRs contribute to the oxidation and epimerization of ALLO and ADT in living cells, and show that RoDH enzymes are expressed in tissues that have microsomal 3alpha-hydroxysteroid dehydrogenase/epimerase activities. Together, these results provide further support for the role of RoDH-like SDRs in human metabolism of 3alpha-hydroxysteroids and offer a new insight into the enzymology of ALLO and ADT inactivation.


Assuntos
3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/metabolismo , Hidroxiesteroides/metabolismo , Fígado/enzimologia , Microssomos/enzimologia , Testículo/enzimologia , 3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/genética , Encéfalo/enzimologia , Linhagem Celular , Ativação Enzimática , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Imuno-Histoquímica , Rim/citologia , Rim/enzimologia , Pulmão/enzimologia , Masculino , NAD/metabolismo , Ovário/enzimologia , Oxirredução , Baço/enzimologia , Transfecção
19.
Urol Res ; 33(5): 368-71, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16292584

RESUMO

In order to prevent kidney stones and nephrolithiasis in hyperoxaluria, a new treatment that specifically reduces oxalate production and therefore urinary oxalate excretion would be extremely valuable. Pyridoxamine(PM) could react with the carbonyl intermediates of oxalate biosynthesis, glycolaldehyde and glyoxylate, and prevent their metabolism to oxalate. In PM treated rats, endogenous urinary oxalate levels were consistently lower and became statistically different from controls after 12 days of experiment. In ethylene glycol-induced hyperoxaluria, PM treatment resulted in significantly lower (by ~50%) levels of urinary glycolate and oxalate excretion compared to untreated hyperoxaluric animals, as well as in a significant reduction in calcium oxalate crystal formation in papillary and medullary areas of the kidney. These results, coupled with favorable toxicity profiles of PM in humans, show promise for the therapeutic use of PM in primary hyperoxaluria and other kidney stone diseases.


Assuntos
Oxalato de Cálcio/metabolismo , Hiperoxalúria Primária/tratamento farmacológico , Rim/metabolismo , Oxalatos/urina , Piridoxamina/uso terapêutico , Animais , Cristalização , Hiperoxalúria Primária/urina , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
20.
Diabetes ; 54(10): 2952-60, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16186398

RESUMO

Perturbation of interactions between cells and the extracellular matrix (ECM) of renal glomeruli may contribute to characteristic histopathological lesions found in the kidneys of patients with diabetic nephropathy. However, the mechanism by which the diabetic conditions may affect cell-ECM interactions is unknown. Existing hypotheses suggest a role of glucose in direct modification of ECM. Here, we have demonstrated that carbonyl compound methylglyoxal (MGO) completely inhibited endothelial cell adhesion to recombinant alpha3 noncollagenous 1 domain of type IV collagen mediated via a short collagenous region containing RGD (Arg-Gly-Asp) sequence as well as binding of purified alpha(v)beta(3) integrin to this protein. Specific MGO adducts of the arginine residue were detected within RGD sequence using mass spectrometry. Modification by carbonyl compounds glyoxal or glycolaldehyde had similar but smaller effects. MGO strongly inhibited adhesion of renal glomerular cells, podocytes, and mesangial cells to native collagen IV and laminin-1 as well as binding of collagen IV to its major receptor in glomerular cells, alpha(1)beta(1) integrin. In contrast, modification of these proteins by glucose had no effect on cell adhesion. Pyridoxamine, a promising drug for treatment of diabetic nephropathy, protected cell adhesion and integrin binding from inhibition by MGO. We suggest that in diabetes, perturbation of integrin-mediated cell-matrix interactions occurs via the modification of critical arginine residues in renal ECM by reactive carbonyl compounds. This mechanism may contribute to the development of diabetic nephropathy.


Assuntos
Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Nefropatias Diabéticas/etiologia , Matriz Extracelular/fisiologia , Integrinas/fisiologia , Rim/ultraestrutura , Aldeído Pirúvico/farmacologia , Aldeídos/farmacologia , Arginina/química , Sítios de Ligação , Adesão Celular/efeitos dos fármacos , Colágeno Tipo IV/metabolismo , Células Endoteliais/fisiologia , Matriz Extracelular/efeitos dos fármacos , Proteínas da Matriz Extracelular/química , Glucose/farmacologia , Glioxal/farmacologia , Humanos , Integrina alfaVbeta3/metabolismo , Glomérulos Renais/ultraestrutura , Piridoxamina/farmacologia , Veias Umbilicais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...